login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonprime numbers k whose arithmetic derivative k' (A003415) is a Fibonacci number (A000045).
1

%I #18 Jul 05 2023 08:23:55

%S 1,6,15,18,22,38,75,93,106,145,253,289,695,959,1467,1703,1820,1821,

%T 2159,3283,3485,3503,3959,4223,4343,4559,5063,5183,6482,6589,7202,

%U 10081,12895,13501,13526,16422,21040,21246,23329,26461,29521,45033,46369,51409,53821

%N Nonprime numbers k whose arithmetic derivative k' (A003415) is a Fibonacci number (A000045).

%C Only nonprime numbers are considered because for prime p, p' = 1 = A000045(1).

%e 1' = 0 = A000045(0), so 1 is a term.

%e 6' = 5 = A000045(5), so 6 is a term.

%e 18' = 21 = A000045(8), so 18 is a term.

%t fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5 n^2 + {-4, 4}]; d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[54000], ! PrimeQ[#] && fibQ[d[#]] &] (* _Amiram Eldar_, May 05 2023 *)

%o (Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; [p:p in [1..54000]|not IsPrime(p) and (IsSquare(5*u*u-4) or IsSquare(5*u*u+4)) where u is Floor(f(p))];

%o (PARI) ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415

%o isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (issquare(k-8)); \\ A000045

%o isok(k) = !isprime(k) && isfib(ad(k)); \\ _Michel Marcus_, Jul 05 2023

%Y Cf. A000045, A003415.

%K nonn

%O 1,2

%A _Marius A. Burtea_, May 03 2023