login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362141
Nonprime numbers k whose arithmetic derivative k' (A003415) is a Fibonacci number (A000045).
1
1, 6, 15, 18, 22, 38, 75, 93, 106, 145, 253, 289, 695, 959, 1467, 1703, 1820, 1821, 2159, 3283, 3485, 3503, 3959, 4223, 4343, 4559, 5063, 5183, 6482, 6589, 7202, 10081, 12895, 13501, 13526, 16422, 21040, 21246, 23329, 26461, 29521, 45033, 46369, 51409, 53821
OFFSET
1,2
COMMENTS
Only nonprime numbers are considered because for prime p, p' = 1 = A000045(1).
EXAMPLE
1' = 0 = A000045(0), so 1 is a term.
6' = 5 = A000045(5), so 6 is a term.
18' = 21 = A000045(8), so 18 is a term.
MATHEMATICA
fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5 n^2 + {-4, 4}]; d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[54000], ! PrimeQ[#] && fibQ[d[#]] &] (* Amiram Eldar, May 05 2023 *)
PROG
(Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; [p:p in [1..54000]|not IsPrime(p) and (IsSquare(5*u*u-4) or IsSquare(5*u*u+4)) where u is Floor(f(p))];
(PARI) ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (issquare(k-8)); \\ A000045
isok(k) = !isprime(k) && isfib(ad(k)); \\ Michel Marcus, Jul 05 2023
CROSSREFS
Sequence in context: A128693 A105285 A138922 * A044058 A105139 A002599
KEYWORD
nonn
AUTHOR
Marius A. Burtea, May 03 2023
STATUS
approved