login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A362047
Numbers whose prime indices satisfy: (maximum) - (minimum) = (mean).
2
10, 30, 39, 90, 98, 99, 100, 115, 259, 270, 273, 300, 490, 495, 517, 663, 665, 793, 810, 900, 1000, 1083, 1241, 1421, 1495, 1521, 1691, 1911, 2058, 2079, 2125, 2145, 2369, 2430, 2450, 2475, 2662, 2700, 2755, 2821, 3000, 3277, 4247, 4495, 4921, 5587, 5863, 6069
OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
FORMULA
A359360(a(n)) = A326844(a(n)).
A243055(a(n)) = A061395(a(n)) - A055396(a(n))
= A326567(a(n))/A326568(a(n))
= A056239(a(n))/A001222(a(n)).
EXAMPLE
The terms together with their prime indices begin:
10: {1,3}
30: {1,2,3}
39: {2,6}
90: {1,2,2,3}
98: {1,4,4}
99: {2,2,5}
100: {1,1,3,3}
115: {3,9}
259: {4,12}
270: {1,2,2,2,3}
273: {2,4,6}
300: {1,1,2,3,3}
The prime indices of 490 are {1,3,4,4}, with minimum 1, maximum 4, and mean 3, and 4-1 = 3, so 490 is in the sequence.
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Max@@prix[#]-Min@@prix[#]==Mean[prix[#]]&]
PROG
(Python)
from itertools import count, islice
from sympy import primepi, factorint
def A362047_gen(startvalue=2): # generator of terms >= startvalue
return filter(lambda n:(primepi(max(f:=factorint(n)))-primepi(min(f)))*sum(f.values())==sum(primepi(i)*j for i, j in f.items()), count(max(startvalue, 2)))
A362047_list = list(islice(A362047_gen(), 20)) # Chai Wah Wu, Apr 13 2023
CROSSREFS
Partitions of this type are counted by A361862.
For minimum instead of mean we have A361908, counted by A118096.
A055396 gives minimum prime index, A061395 maximum.
A112798 list prime indices, length A001222, sum A056239.
A243055 subtracts the least prime index from the greatest.
A326844 gives the diagram complement size of Heinz partition.
Sequence in context: A034117 A104863 A376639 * A326122 A027183 A333300
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 11 2023
STATUS
approved