login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361701
Constant term in the expansion of (1 + x^4 + y^4 + z^4 + 1/(x*y*z))^n.
1
1, 1, 1, 1, 1, 1, 1, 211, 1681, 7561, 25201, 69301, 166321, 360361, 990991, 5405401, 34834801, 187867681, 833709241, 3153281041, 10491944401, 31945216801, 97323704941, 345845431471, 1529597398561, 7451402805001, 35092646589001, 151591791651301
OFFSET
0,8
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/7)} (3*k)!/k!^3 * binomial(7*k,3*k) * binomial(n,7*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 8*n^3*(2*n - 7)*(4*n - 21)*(4*n - 7)*a(n) = 8*(224*n^6 - 2688*n^5 + 11550*n^4 - 22736*n^3 + 22666*n^2 - 11746*n + 2475)*a(n-1) - 56*(n-1)*(96*n^5 - 1200*n^4 + 5540*n^3 - 11982*n^2 + 12466*n - 5115)*a(n-2) + 224*(n-2)*(n-1)*(40*n^4 - 480*n^3 + 2065*n^2 - 3822*n + 2607)*a(n-3) - 56*(n-3)*(n-2)*(n-1)*(160*n^3 - 1680*n^2 + 5730*n - 6407)*a(n-4) + 112*(n-4)*(n-3)*(n-2)*(n-1)*(48*n^2 - 384*n + 757)*a(n-5) - 896*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 9)*a(n-6) + 823799*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-7).
a(n) ~ sqrt(c) * (1 + 7/2^(8/7))^n / (Pi^(3/2) * n^(3/2)), where c = 3.4855654710461411310762468259332410505173151761420224383969482891017005063... is the real root of the equation -559066901335151399 + 2527163634923732000*c - 5081793740448746496*c^2 + 5406293137205395456*c^3 - 3558495001867452416*c^4 + 1393309590535274496*c^5 - 303305489096114176*c^6 + 28296722014797824*c^7 = 0. (End)
MATHEMATICA
Table[Sum[(3*k)!/k!^3 * Binomial[7*k, 3*k] * Binomial[n, 7*k], {k, 0, n/7}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 22 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\7, (3*k)!/k!^3*binomial(7*k, 3*k)*binomial(n, 7*k));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 21 2023
STATUS
approved