OFFSET
0,7
FORMULA
a(n) = Sum_{k=0..floor(n/6)} (4*k)!/k!^4 * binomial(6*k,4*k) * binomial(n,6*k).
From Vaclav Kotesovec, Mar 25 2023: (Start)
Recurrence: (n-3)*n^4*a(n) = (6*n^5 - 30*n^4 + 50*n^3 - 45*n^2 + 21*n - 4)*a(n-1) - (n-1)*(15*n^4 - 90*n^3 + 195*n^2 - 195*n + 76)*a(n-2) + 5*(n-2)*(n-1)*(4*n^3 - 24*n^2 + 48*n - 33)*a(n-3) - 5*(n-3)*(n-2)*(n-1)*(3*n^2 - 15*n + 19)*a(n-4) + 6*(n-4)*(n-3)^2*(n-2)*(n-1)*a(n-5) + 11663*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6).
a(n) ~ sqrt(7 + 9/(4*2^(1/3)) + 433/(48*2^(2/3))) * (1 + 3*2^(2/3))^n / (Pi^2 * n^2). (End)
MATHEMATICA
Table[Sum[(4*k)!/k!^4 * Binomial[6*k, 4*k] * Binomial[n, 6*k], {k, 0, n/6}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 25 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\6, (4*k)!/k!^4*binomial(6*k, 4*k)*binomial(n, 6*k));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 21 2023
STATUS
approved