login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361673
Constant term in the expansion of (1 + x*y + y*z + z*x + 1/(x*y*z))^n.
3
1, 1, 1, 1, 1, 61, 361, 1261, 3361, 7561, 34021, 235621, 1294921, 5482621, 19039021, 65345281, 286147681, 1511480881, 7688794681, 34337600281, 138221512741, 554603041441, 2454508134541, 11874549049441, 57412094595241, 261925516443361, 1134301869703861
OFFSET
0,6
COMMENTS
Also constant term in the expansion of (1 + x^2 + y^2 + z^2 + 1/(x*y*z))^n.
LINKS
FORMULA
a(n) = n! * Sum_{k=0..floor(n/5)} 1/(k!^3 * (2*k)! * (n-5*k)!) = Sum_{k=0..floor(n/5)} binomial(n,5*k) * A001460(k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 2*n^3*(2*n - 5)*a(n) = 2*(10*n^4 - 40*n^3 + 50*n^2 - 30*n + 7)*a(n-1) - 10*(n-1)*(4*n^3 - 18*n^2 + 26*n - 13)*a(n-2) + 40*(n-2)^3*(n-1)*a(n-3) - 10*(n-3)*(n-2)*(n-1)*(2*n - 5)*a(n-4) + 3129*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ sqrt(c) * (1 + 5/2^(2/5))^n / (Pi^(3/2) * n^(3/2)), where c = 3.154712586460560795509193778252140601572145506226776094640234924884123818... is the real root of the equation -30634915689 + 95407210000*c - 127160000000*c^2 + 79846400000*c^3 - 25600000000*c^4 + 3276800000*c^5 = 0. (End)
MATHEMATICA
Table[n! * Sum[1/(k!^3 * (2*k)! * (n-5*k)!), {k, 0, n/5}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 22 2023 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\5, 1/(k!^3*(2*k)!*(n-5*k)!));
CROSSREFS
Cf. A001460.
Sequence in context: A142953 A245763 A130117 * A373525 A357965 A353225
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 20 2023
STATUS
approved