login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353225
Expansion of e.g.f. (1 - x^4)^(-1/x^3).
4
1, 1, 1, 1, 1, 61, 361, 1261, 3361, 128521, 1678321, 11670121, 56596321, 1773048421, 37020623641, 410615985781, 3056256665281, 88439609228881, 2516514283997281, 39513591769228561, 409546654143301441, 11679302565962651341, 413008783534735181641
OFFSET
0,6
FORMULA
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..floor((n+3)/4)} (4*k-3)/k * a(n-4*k+3)/(n-4*k+3)!.
a(n) = n! * Sum_{k=0..floor(n/4)} |Stirling1(n-3*k,n-4*k)|/(n-3*k)!.
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / (4*exp(n)). - Vaclav Kotesovec, May 04 2022
MATHEMATICA
With[{nn=30}, CoefficientList[Series[(1-x^4)^(-1/x^3), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 17 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^4)^(-1/x^3)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1-x^4)/x^3)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, (i+3)\4, (4*j-3)/j*v[i-4*j+4]/(i-4*j+3)!)); v;
(PARI) a(n) = n!*sum(k=0, n\4, abs(stirling(n-3*k, n-4*k, 1))/(n-3*k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 01 2022
STATUS
approved