OFFSET
0,6
FORMULA
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..floor((n+3)/4)} (4*k-3)/k * a(n-4*k+3)/(n-4*k+3)!.
a(n) = n! * Sum_{k=0..floor(n/4)} |Stirling1(n-3*k,n-4*k)|/(n-3*k)!.
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / (4*exp(n)). - Vaclav Kotesovec, May 04 2022
MATHEMATICA
With[{nn=30}, CoefficientList[Series[(1-x^4)^(-1/x^3), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 17 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^4)^(-1/x^3)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1-x^4)/x^3)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, (i+3)\4, (4*j-3)/j*v[i-4*j+4]/(i-4*j+3)!)); v;
(PARI) a(n) = n!*sum(k=0, n\4, abs(stirling(n-3*k, n-4*k, 1))/(n-3*k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 01 2022
STATUS
approved