login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361690
Number of primes in the interval [2^n, 2^n + n].
1
0, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 0, 0, 3, 4, 0, 3, 0, 2, 1, 1, 3, 0, 0, 1, 0, 2, 1, 5, 1, 1, 2, 1, 0, 1, 2, 2, 2, 2, 1, 1, 2, 3, 0, 1, 3, 1, 0, 0, 1, 2, 2, 0, 3, 0, 2, 0, 0, 1, 3, 0, 1, 3, 0, 1, 2, 3, 1, 2, 2, 1, 1, 2, 3, 2, 4, 2, 2, 1, 2, 4, 1, 3, 0, 3, 2, 1, 2, 0
OFFSET
0,2
LINKS
FORMULA
From Alois P. Heinz, Mar 20 2023: (Start)
a(n) = pi(2^n+n) - pi(2^n-1), pi = A000720.
a(n) = A143537(2^n+n,2^n-1). (End)
EXAMPLE
In the interval [2^1, 2^1 + 1] there are 2 primes (2 and 3). So a(1) = 2.
MAPLE
a:= n-> nops(select(isprime, [$2^n..2^n+n])):
seq(a(n), n=0..100); # Alois P. Heinz, Mar 20 2023
MATHEMATICA
Array[PrimePi[2^# + #] - PrimePi[2^# - 1] &, 50, 0] (* Michael De Vlieger, Mar 27 2023 *)
PROG
(PARI) a(n)=#primes([2^n, 2^n+n])
(Python)
from sympy import isprime
def A361690(n): return sum(1 for p in range((1<<n)+1, (1<<n)+n+1, 2) if isprime(p)) if n != 1 else 2 # Chai Wah Wu, Mar 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Jean-Marc Rebert, Mar 20 2023
STATUS
approved