The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020906 Triangle where n-th row is the first n terms of the sequence in reverse order, starting with a(1) = 1 and a(2) = 2. 1
 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Lim f(f(...f(n))) where f(n) is fractal sequence in A004736. REFERENCES C. Kimberling, "Numeration systems and fractal sequences," Acta Arithmetica 73 (1995) 103-117. LINKS C. Kimberling, Fractal sequences EXAMPLE The triangle starts: 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 Since the sequence starts 1,2,1,1,2, row 5 is the reversal of that, 2,1,1,2,1. PROG (PARI) at(n)=local(r, k); r=vector(n*(n+1)\2); r[1]=r[3]=1; r[2]=2; k=4; for(i=3, n, for(j=1, i, r[k]=r[i-j+1]; k++)); r /* Generates first n>1 rows of triangle. - Franklin T. Adams-Watters, Aug 08 2011. */ CROSSREFS Cf. A004736, A020907. Sequence in context: A056731 A042974 A235757 * A220280 A191774 A262885 Adjacent sequences:  A020903 A020904 A020905 * A020907 A020908 A020909 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 10:48 EDT 2021. Contains 347714 sequences. (Running on oeis4.)