login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A361683 a(n) is the least k such that tau(k) divides sigma_n(k) but not sigma(k), or -1 if no such k exists. 0
4, 64, 4, 7168, 4, 606528, 4, 64, 4, 4194304, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
a(13) <= 31525197391593472. - David A. Corneth, Mar 20 2023
From Thomas Scheuerle, Mar 22 2023: (Start)
a(17) <= 15211807202738752817960438464512 and a(19) <= 2^190*11.
Conjecture: a(n) is of the form 2^b*p1^c*p2^d*...*pk^j with b > 0 and A020639(n) divides b*(c+1)*(d+1)*...*(j+1). (p1, p2, ..., pk are distinct odd prime numbers). (End)
LINKS
FORMULA
a(2*m) = 4 for m >= 1.
a(6*m-3) = 64 for m >= 1.
From Thomas Scheuerle, Mar 22 2023: (Start)
a(m) <= a(A020639(m)) if a(A020639(m)) <> -1.
Conjecture: For primes q > p, a(q) > a(p). If true, we could replace "<=" with "=" in the above formula. (End)
MATHEMATICA
a[n_] := Module[{k = 1, d}, While[Divisible[DivisorSigma[1, k], (d = DivisorSigma[0, k])] || !Divisible[DivisorSigma[n, k], d], k++]; k]; Array[a, 11, 2] (* Amiram Eldar, Mar 20 2023 *)
PROG
(PARI) isok(k, n) = my(f=factor(k), nd=numdiv(f)); (sigma(f) % nd) && !(sigma(f, n) % nd);
a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Mar 20 2023
CROSSREFS
Cf. A020639, A010709 (bisection).
Sequence in context: A354653 A213545 A362386 * A111444 A368111 A367913
KEYWORD
nonn,more
AUTHOR
Mohammed Yaseen, Mar 20 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 18:17 EDT 2024. Contains 374475 sequences. (Running on oeis4.)