login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361683
a(n) is the least k such that tau(k) divides sigma_n(k) but not sigma(k), or -1 if no such k exists.
0
4, 64, 4, 7168, 4, 606528, 4, 64, 4, 4194304, 4
OFFSET
2,1
COMMENTS
a(13) <= 31525197391593472. - David A. Corneth, Mar 20 2023
From Thomas Scheuerle, Mar 22 2023: (Start)
a(17) <= 15211807202738752817960438464512 and a(19) <= 2^190*11.
Conjecture: a(n) is of the form 2^b*p1^c*p2^d*...*pk^j with b > 0 and A020639(n) divides b*(c+1)*(d+1)*...*(j+1). (p1, p2, ..., pk are distinct odd prime numbers). (End)
FORMULA
a(2*m) = 4 for m >= 1.
a(6*m-3) = 64 for m >= 1.
From Thomas Scheuerle, Mar 22 2023: (Start)
a(m) <= a(A020639(m)) if a(A020639(m)) <> -1.
Conjecture: For primes q > p, a(q) > a(p). If true, we could replace "<=" with "=" in the above formula. (End)
MATHEMATICA
a[n_] := Module[{k = 1, d}, While[Divisible[DivisorSigma[1, k], (d = DivisorSigma[0, k])] || !Divisible[DivisorSigma[n, k], d], k++]; k]; Array[a, 11, 2] (* Amiram Eldar, Mar 20 2023 *)
PROG
(PARI) isok(k, n) = my(f=factor(k), nd=numdiv(f)); (sigma(f) % nd) && !(sigma(f, n) % nd);
a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Mar 20 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Mohammed Yaseen, Mar 20 2023
STATUS
approved