login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the least k such that tau(k) divides sigma_n(k) but not sigma(k), or -1 if no such k exists.
0

%I #48 Mar 22 2023 15:17:55

%S 4,64,4,7168,4,606528,4,64,4,4194304,4

%N a(n) is the least k such that tau(k) divides sigma_n(k) but not sigma(k), or -1 if no such k exists.

%C a(13) <= 31525197391593472. - _David A. Corneth_, Mar 20 2023

%C From _Thomas Scheuerle_, Mar 22 2023: (Start)

%C a(17) <= 15211807202738752817960438464512 and a(19) <= 2^190*11.

%C Conjecture: a(n) is of the form 2^b*p1^c*p2^d*...*pk^j with b > 0 and A020639(n) divides b*(c+1)*(d+1)*...*(j+1). (p1, p2, ..., pk are distinct odd prime numbers). (End)

%F a(2*m) = 4 for m >= 1.

%F a(6*m-3) = 64 for m >= 1.

%F From _Thomas Scheuerle_, Mar 22 2023: (Start)

%F a(m) <= a(A020639(m)) if a(A020639(m)) <> -1.

%F Conjecture: For primes q > p, a(q) > a(p). If true, we could replace "<=" with "=" in the above formula. (End)

%t a[n_] := Module[{k = 1, d}, While[Divisible[DivisorSigma[1, k], (d = DivisorSigma[0, k])] || !Divisible[DivisorSigma[n, k], d], k++]; k]; Array[a, 11, 2] (* _Amiram Eldar_, Mar 20 2023 *)

%o (PARI) isok(k, n) = my(f=factor(k), nd=numdiv(f)); (sigma(f) % nd) && !(sigma(f,n) % nd);

%o a(n) = my(k=1); while (!isok(k,n), k++); k; \\ _Michel Marcus_, Mar 20 2023

%Y Cf. A003601, A020486, A046839, A046840.

%Y Cf. A000005, A000203, A001157, A001158.

%Y Cf. A020639, A010709 (bisection).

%K nonn,more

%O 2,1

%A _Mohammed Yaseen_, Mar 20 2023