login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361610
a(n) = 5^n*(n+1)*(4*n^2+14*n+3)/3.
3
1, 70, 1175, 13500, 128125, 1081250, 8421875, 61875000, 434765625, 2949218750, 19443359375, 125195312500, 790283203125, 4904785156250, 29998779296875, 181152343750000, 1081695556640625, 6394958496093750, 37471771240234375, 217819213867187500, 1257038116455078125
OFFSET
0,2
COMMENTS
The sequences A(n,k) = Sum_{j=0..n} Sum_{i=0..j} (-1)^(j-i) * binomial(n,j) * binomial(j,i) * binomial(j+k+(k+1)*i,j+k) are C-sequences for fixed integer k, here A(n,k=3) = a(n).
FORMULA
G.f.: (1 + 50*x - 75*x^2) / (5*x - 1)^4.
a(n) = 20*a(n-1) -150*a(n-2) +500*a(n-3) -625*a(n-4).
D-finite with recurrence n*(4*n^2+6*n-7)*a(n) -5*(n+1)*(4*n^2+14*n+3)*a(n-1)=0.
MATHEMATICA
LinearRecurrence[{20, -150, 500, -625}, {1, 70, 1175, 13500}, 30] (* Harvey P. Dale, Aug 29 2024 *)
PROG
(Python)
def A361610(n): return 5**n*(n*(n*(4*n + 18) + 17) + 3)//3 # Chai Wah Wu, Mar 17 2023
CROSSREFS
Cf. A027471 (k=1), A361609 (k=2), A361608 (k=5).
Sequence in context: A362054 A229735 A254472 * A353896 A353885 A353893
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 17 2023
STATUS
approved