Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Aug 29 2024 17:17:47
%S 1,70,1175,13500,128125,1081250,8421875,61875000,434765625,2949218750,
%T 19443359375,125195312500,790283203125,4904785156250,29998779296875,
%U 181152343750000,1081695556640625,6394958496093750,37471771240234375,217819213867187500,1257038116455078125
%N a(n) = 5^n*(n+1)*(4*n^2+14*n+3)/3.
%C The sequences A(n,k) = Sum_{j=0..n} Sum_{i=0..j} (-1)^(j-i) * binomial(n,j) * binomial(j,i) * binomial(j+k+(k+1)*i,j+k) are C-sequences for fixed integer k, here A(n,k=3) = a(n).
%H Winston de Greef, <a href="/A361610/b361610.txt">Table of n, a(n) for n = 0..1408</a>
%H Project Euler, <a href="https://projecteuler.net/problem=831">Problem 831. Triple Product</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (20,-150,500,-625).
%F G.f.: (1 + 50*x - 75*x^2) / (5*x - 1)^4.
%F a(n) = 20*a(n-1) -150*a(n-2) +500*a(n-3) -625*a(n-4).
%F D-finite with recurrence n*(4*n^2+6*n-7)*a(n) -5*(n+1)*(4*n^2+14*n+3)*a(n-1)=0.
%t LinearRecurrence[{20,-150,500,-625},{1,70,1175,13500},30] (* _Harvey P. Dale_, Aug 29 2024 *)
%o (Python)
%o def A361610(n): return 5**n*(n*(n*(4*n + 18) + 17) + 3)//3 # _Chai Wah Wu_, Mar 17 2023
%Y Cf. A027471 (k=1), A361609 (k=2), A361608 (k=5).
%K nonn,easy
%O 0,2
%A _R. J. Mathar_, Mar 17 2023