login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A361455
Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components.
3
1, 0, 1, 0, 1, 3, 0, 18, 21, 25, 0, 1606, 1173, 774, 543, 0, 565080, 271790, 122595, 59830, 29281, 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503, 0, 3523091615568, 685793359804, 138122171880, 35130437825, 11002159455, 3767987307, 1138779265
OFFSET
0,6
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50).
FORMULA
T(n,k) = A361269(n,k)/2^n.
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 3;
0, 18, 21, 25;
0, 1606, 1173, 774, 543;
0, 565080, 271790, 122595, 59830, 29281;
0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503;
...
PROG
(PARI)
Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
U(e, p)={Z(p, k->e^(k*(k-1)/2))}
DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e)))))))))]}
{ my(A=T(6)); for(i=1, #A, print(A[i])) }
CROSSREFS
Column k=1 is A003030.
Main diagonal is A003024.
Row sums are A053763.
The unlabeled version is A361582.
Cf. A189898 (weak components), A361269 (loops allowed), A361591.
Sequence in context: A009759 A127187 A057398 * A373713 A013579 A151814
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 16 2023
STATUS
approved