login
A361343
Numbers k such that A361338(k) = 4.
1
219, 257, 267, 274, 277, 278, 284, 286, 298, 299, 317, 319, 328, 344, 359, 363, 366, 377, 398, 418, 419, 433, 434, 437, 438, 449, 454, 464, 469, 471, 478, 482, 486, 492, 494, 527, 544, 547, 549, 576, 588, 616, 626, 633, 636, 639, 644, 657, 663, 673, 677, 681, 682, 694, 698, 699, 714, 717, 718, 727, 728, 733, 734, 736, 738, 762, 767, 773, 778, 792
OFFSET
1,1
COMMENTS
{0, 2, 4, 6} and {0, 2, 6, 8} are by far the most frequent possible outcome for these numbers. Up to 10^4, no number in this sequence ever produces a 1, and 1113 and 1311 are the only terms that can produce a 3, and {919, 1193, 1199, 1357, 1751, 1913, 2373} are the only terms that produce a 7. - M. F. Hasler, Apr 08 2023
LINKS
MATHEMATICA
-1 + Position[#, 4][[All, 1]] &@ Flatten@ Array[Map[Total, Transpose@ ImageData[ColorNegate@ Import["https://oeis.org/A361338/a361338_2.png", "PNG"], "Bit"][[10 # + 1 ;; 10 # + 10, 1 ;; 1000]]] &, 1, 0] (* Michael De Vlieger, Apr 06 2023, using image at A361338 *)
PROG
(PARI) select( {is_A361343(n)=A361338(n)==4}, [1..800]) \\ M. F. Hasler, Apr 08 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Apr 05 2023
STATUS
approved