OFFSET
3,1
COMMENTS
No sum of two consecutive primes is a semiprime. Proof: if prime(k) and prime(k+1) are odd primes, prime(k)+prime(k+1) is even, so the only way it could be a semiprime is for (prime(k)+prime(k+1))/2 to be prime. But this is impossible because prime(k) and prime(k+1) are consecutive primes and (prime(k)+prime(k+1))/2 is between them.
LINKS
Robert Israel, Table of n, a(n) for n = 3..10000
EXAMPLE
a(3) = 10 = 2+3+5, a(4) = 26 = 3+5+7+11, a(5) = 39 = 3+5+7+11+13, a(6) = 358 = 47+53+59+61+67+71.
MAPLE
P:= select(isprime, [2, seq(i, i=3..10^6, 2)]):
S:= ListTools:-PartialSums(P):
f:= proc(n) local k, s;
if numtheory:-bigomega(S[n])=2 then return S[n] fi;
if n::even then
for k from 1 do
if isprime((S[n+k]-S[k])/2) then return S[n+k]-S[k] fi
od
else
for k from 1 do
if numtheory:-bigomega(S[n+k]-S[k]) = 2 then return S[n+k]-S[k] fi
od
fi
end proc:
map(f, [$3..100]);
MATHEMATICA
pr = Prime[Range[10^6]]; Do[to = Total /@ Partition[pr, n, 1]; se =
Select[to, 2 == PrimeOmega[#] &, 1][[1]]; AppendTo[s, se], {n, 3, 30}]; s
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert Israel, Mar 06 2023
STATUS
approved