%I #15 Mar 13 2023 11:52:02
%S 10,26,39,358,58,77,155,129,583,562,323,326,551,381,629,501,707,1294,
%T 789,791,961,1354,1159,1262,1369,1371,1591,1718,1849,1851,2271,2127,
%U 3561,2427,3077,2747,3085,3442,4811,3826,3829,3831,5089,4227,4659,4661,5345,7318,5587,8146,6333,6081,6338
%N a(n) is the least semiprime that is the sum of n consecutive primes.
%C No sum of two consecutive primes is a semiprime. Proof: if prime(k) and prime(k+1) are odd primes, prime(k)+prime(k+1) is even, so the only way it could be a semiprime is for (prime(k)+prime(k+1))/2 to be prime. But this is impossible because prime(k) and prime(k+1) are consecutive primes and (prime(k)+prime(k+1))/2 is between them.
%H Robert Israel, <a href="/A361259/b361259.txt">Table of n, a(n) for n = 3..10000</a>
%e a(3) = 10 = 2+3+5, a(4) = 26 = 3+5+7+11, a(5) = 39 = 3+5+7+11+13, a(6) = 358 = 47+53+59+61+67+71.
%p P:= select(isprime, [2,seq(i,i=3..10^6,2)]):
%p S:= ListTools:-PartialSums(P):
%p f:= proc(n) local k,s;
%p if numtheory:-bigomega(S[n])=2 then return S[n] fi;
%p if n::even then
%p for k from 1 do
%p if isprime((S[n+k]-S[k])/2) then return S[n+k]-S[k] fi
%p od
%p else
%p for k from 1 do
%p if numtheory:-bigomega(S[n+k]-S[k]) = 2 then return S[n+k]-S[k] fi
%p od
%p fi
%p end proc:
%p map(f, [$3..100]);
%t pr = Prime[Range[10^6]]; Do[to = Total /@ Partition[pr,n,1]; se =
%t Select[to,2 == PrimeOmega[#] &,1][[1]]; AppendTo[s,se],{n,3,30}]; s
%Y Cf. A001358.
%K nonn
%O 3,1
%A _Zak Seidov_ and _Robert Israel_, Mar 06 2023