login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361038
a(n) = 1680 * (3*n)!/((2*n)!*(n+3)!).
4
280, 210, 420, 1176, 3960, 15015, 61880, 271320, 1248072, 5965050, 29414700, 148874400, 770263200, 4061212722, 21765976680, 118336861720, 651555929640, 3627981880950, 20405547069180, 115815267149400, 662742214356600
OFFSET
0,1
COMMENTS
Compare with the super ballot numbers A007272(n) = 60*(2*n)!/(n!*(n+3)!).
FORMULA
a(n) = 280*binomial(3*n,n) - 228*binomial(3*n,n+1) + 54*binomial(3*n,n+2) - 5*binomial(3*n,n+3). Thus a(n) is an integer.
P-recursive: 2*(n + 3)*(2*n - 1) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 280.
a(n) ~ (27/4)^n * 840*sqrt(3/Pi)/n^(7/2).
The o.g.f. satisfies the differential equation
x^2*(27*x - 4)*A''(x) + 2*x*(27*x - 7)*A'(x) + (6*x + 6)*A(x) - 1680 = 0, with A(0) = 280 and A'(0) = 210.
MAPLE
seq( 1680 * (3*n)!/((2*n)!*(n+3)!), n = 0..20);
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 04 2023
STATUS
approved