OFFSET
0,1
COMMENTS
Compare with the super ballot numbers A007272(n) = 60*(2*n)!/(n!*(n+3)!).
FORMULA
a(n) = 280*binomial(3*n,n) - 228*binomial(3*n,n+1) + 54*binomial(3*n,n+2) - 5*binomial(3*n,n+3). Thus a(n) is an integer.
P-recursive: 2*(n + 3)*(2*n - 1) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 280.
a(n) ~ (27/4)^n * 840*sqrt(3/Pi)/n^(7/2).
The o.g.f. satisfies the differential equation
x^2*(27*x - 4)*A''(x) + 2*x*(27*x - 7)*A'(x) + (6*x + 6)*A(x) - 1680 = 0, with A(0) = 280 and A'(0) = 210.
MAPLE
seq( 1680 * (3*n)!/((2*n)!*(n+3)!), n = 0..20);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 04 2023
STATUS
approved