login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361036
a(n) = n! * [x^n] (1 + x)^n * exp(x*(1 + x)^n).
1
1, 2, 11, 124, 2225, 56546, 1928707, 85029596, 4687436609, 314255427490, 25077179715131, 2343489559096412, 253185531592066801, 31279831940279656514, 4376923336721600128115, 687815536092999747916156, 120491486068612766739548417, 23378730923206887237941740226
OFFSET
0,2
COMMENTS
We conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. For example, modulo 7 the sequence becomes [1, 2, 4, 5, 6, 0, 4, 1, 2, 4, 5, 6, 0, 4, 1, 2, 4, 5, 6, 0, 4, ...], apparently a periodic sequence of period 7.
More generally, let F(x) and G(x) denote power series with integer coefficients with F(0) = G(0) = 1. Define b(n) = n! * [x^n] exp(x*G(x)^n)*F(x)^n. Then we conjecture that b(n+k) == b(n) (mod k) for all n and k.
LINKS
FORMULA
a(n) = n!*Sum_{i = 0..n} Sum_{j = 0..n-i} binomial(n,i+j)*binomial(j*n,i)/j!.
a(n) ~ n! * exp(r*(1+r)^n) * (1+r)^(n/2 + 1) / (sqrt(2*Pi*n*(3 + n*r)) * r^(n+1)), where r = 2*LambertW(n/2)/n - (n + 2*LambertW(n/2)) * (n - 4*LambertW(n/2)^3) / (n^3 * (3 + 2*LambertW(n/2))). - Vaclav Kotesovec, Mar 28 2023
MAPLE
seq( n!*add(add(binomial(n, i+j)*binomial(j*n, i)/j!, j = 0..n-i), i = 0..n), n = 0..20);
MATHEMATICA
Table[n! * Sum[Sum[Binomial[n, i + j]*Binomial[j*n, i]/j!, {j, 0, n - i}], {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 27 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 13 2023
STATUS
approved