login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360937
Triangle read by rows: T(n, k) is the k-th Lie-Betti number of a wheel graph on n vertices, for n >= 3 and k >= 0.
6
1, 3, 8, 12, 8, 3, 1, 1, 4, 20, 56, 84, 90, 84, 56, 20, 4, 1, 1, 5, 32, 108, 212, 371, 547, 547, 371, 212, 108, 32, 5, 1, 1, 6, 45, 171, 442, 1081, 2025, 2616, 2722, 2616, 2025, 1081, 442, 171, 45, 6, 1, 1, 7, 60, 258, 842, 2489, 5440, 8855, 12955, 16785, 16785, 12955, 8855, 5440, 2489, 842, 258, 60, 7, 1
OFFSET
3,2
LINKS
Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
Meera G. Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Wheel Graph.
EXAMPLE
Triangle T(n, k) begins:
k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n=3: 1 3 8 12 8 3 1
n=4: 1 4 20 56 84 90 84 56 20 4 1
n=5: 1 5 32 108 212 371 547 547 371 212 108 32 5 1
n=6: 1 6 45 171 442 1081 2025 2616 2722 2616 2025 1081 442 171 45 6 1
...
PROG
(SageMath) # uses[betti_numbers, LieAlgebraFromGraph from A360571]
def A360937_row(n):
return betti_numbers(LieAlgebraFromGraph(graphs.WheelGraph(n)))
for n in range(3, 7): print(A360937_row(n))
CROSSREFS
Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360936 (ladder graph), A361044 (friendship graph).
Sequence in context: A356865 A050391 A360572 * A361044 A288865 A331069
KEYWORD
nonn,tabf
AUTHOR
Samuel J. Bevins, Feb 26 2023
STATUS
approved