login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360935
Expansion of e.g.f. Sum_{k>=0} exp((k^k - 1)*x) * x^k/k!.
2
1, 1, 1, 10, 159, 8306, 1346855, 801620870, 2064941077199, 20691706495244482, 1137052204448926181679, 255128692791512749880418782, 348784909594653094321340422905383, 2262992285674206001784964011734257207938
OFFSET
0,4
FORMULA
G.f.: Sum_{k>=0} x^k/(1 - (k^k - 1)*x)^(k+1).
a(n) = Sum_{k=0..n} (k^k - 1)^(n-k) * binomial(n,k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1+x+sum(k=2, N, exp((k^k-1)*x)*x^k/k!)))
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k^k-1)*x)^(k+1)))
(PARI) a(n) = sum(k=0, n, (k^k-1)^(n-k)*binomial(n, k));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Feb 26 2023
STATUS
approved