OFFSET
1,1
COMMENTS
This sequence appears in the triangle A108038 in this order (reading by rows): 3, 2, 7, 5, 11, 13, 29, 23, 47, 37, 41, 97, 107, 103, 89, 199, 157, 173, 167.
Are there infinitely many primes of the form H(m,k)?
This sequence appears within the determinant Hosoya triangle.
LINKS
Robert Israel, Table of n, a(n) for n = 1..9313
Hsin-Yun Ching, Rigoberto Florez, F. Luca, Antara Mukherjee, and J. C. Saunders, Primes and composites in the determinant Hosoya triangle, Fibonacci Quarterly, 2023.
EXAMPLE
MAPLE
Res:= {}:
M:= 50: # for terms <= F(M)
fmax:= combinat:-fibonacci(M):
T[1]:= [1, 1]:
T[2]:= [1, 3, 1]:
for i from 3 to M do
t1:= [op(T[i-1][1..i-1] + T[i-2][1..i-1]), T[i-1][i], 0];
t2:= ListTools:-Reverse(t1);
T[i]:= zip(max, t1, t2);
Res:= Res union convert(select(t -> t <= fmax and isprime(t), T[i][1..ceil((i+1)/2)]), set)
od:
sort(convert(Res, list)); # Robert Israel, Mar 14 2024
MATHEMATICA
H[r_, k_] := Det[{{Fibonacci[r-k+2], Fibonacci[r-k+1]}, {Fibonacci[k], Fibonacci[k+1]}}]; DeterminantPrimes[t_, m_] := Table[If[PrimeQ[H[r, k]], H[r, k], Unevaluated[Sequence[]]], {r, t, m}, {k, 1, Ceiling[r/2]}]; ListOfPrimes[t_, m_]:= Sort[DeleteDuplicates[Flatten[DeterminantPrimes[t, m]]]]; ListOfPrimes[2, 100]
CROSSREFS
KEYWORD
nonn
AUTHOR
Rigoberto Florez, Feb 25 2023
STATUS
approved