login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360720
a(n) is the sum of unitary divisors of n that are powerful (A001694).
1
1, 1, 1, 5, 1, 1, 1, 9, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 9, 26, 1, 28, 5, 1, 1, 1, 33, 1, 1, 1, 50, 1, 1, 1, 9, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 28, 1, 9, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 90, 1, 1, 26, 5, 1, 1, 1, 17, 82
OFFSET
1,4
COMMENTS
The number of these divisors is given by A323308.
FORMULA
Multiplicative with a(p) = 1 and a(p^e) = p^e + 1 for e > 1.
a(n) <= A034444(n), with equality if and only if n is powerful (A001694).
a(n) <= A183097(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(s)*zeta(s-1)*Product_{p prime} (1 - p^(1-s) + p^(2-2*s) - p^(2-3*s)).
From Vaclav Kotesovec, Feb 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{primes p} (1 - p^(3-4*s) - p^(2-3*s) + p^(3-3*s)).
Sum_{k=1..n} a(k) ~ c * zeta(3/2) * n^(3/2) / 3, where c = Product_{primes p} (1 + 1/p^(3/2) - 1/p^(5/2) - 1/p^3) = 1.48039182258752809541724060173644... (End)
a(n) = A034448(A057521(n)) (the sum of unitary divisors of the powerful part of n). - Amiram Eldar, Dec 12 2023
MATHEMATICA
f[p_, e_] := If[e == 1, 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2] + 1)); }
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - p^3*X^4 - p^2*X^3 + p^3*X^3) / ((1 - X) * (1 - p^2*X^2)))[n], ", ")) \\ Vaclav Kotesovec, Feb 18 2023
CROSSREFS
Similar sequences: A183097, A360722.
Sequence in context: A168677 A345939 A140210 * A010130 A361063 A363972
KEYWORD
nonn,mult,easy
AUTHOR
Amiram Eldar, Feb 18 2023
STATUS
approved