login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360290
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1-k,k) * binomial(2*n-4*k,n-2*k).
2
1, 2, 6, 22, 82, 314, 1222, 4814, 19138, 76626, 308550, 1248230, 5069266, 20654602, 84392838, 345659166, 1418769154, 5834283298, 24031706246, 99134911542, 409495076050, 1693539077210, 7011618614342, 29058701620974, 120540377731266, 500443750830962
OFFSET
0,2
FORMULA
G.f.: 1 / sqrt(1-4*x/(1-x^2)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(n-2)*a(n-2) - 2*(2*n-7)*a(n-3) - (n-4)*a(n-4).
a(n) ~ phi^(3*n) / (5^(1/4) * sqrt(Pi*n/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Feb 02 2023
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(n-1-k, k)*binomial(2*n-4*k, n-2*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 01 2023
STATUS
approved