login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359482
Lexicographically earliest sequence of distinct terms > 0 such that the sum a(n) + a(n+1) is a substring of the concatenation (a(n), a(n+1)).
2
1, 10, 99, 889, 8009, 1101, 9089, 80718, 100284, 183899, 206021, 396118, 215703, 354632, 108578, 469891, 229021, 61195, 34146, 7321, 13817, 3536, 1825, 749, 167, 508, 324, 2096, 4337, 2958, 2870, 4171, 12941, 16470, 30560, 25465, 21056, 35296, 17665, 35927, 23345, 10106, 548, 279, 516, 1094, 3228, 5302
OFFSET
1,2
COMMENTS
Is this sequence a permutation of the integers > 0?
I conjecture that it isn't, and more specifically, that a(1) = 1 is the only single-digit term, and a(2) = 10 the only multiple of 10 below 100. See Examples for other terms of the form x*10^k, 1 <= x <= 9. - M. F. Hasler, Jul 03 2023
LINKS
Eric Angelini, Échecs et Maths, Personal blog, bottom of the page, July 2023.
Hans Havermann, 100000 terms, July 2023
EXAMPLE
1 + 10 = 11 and 11 is a substring of concat(1, 10) = 110.
10 + 99 = 109 and 109 is a substring of concat(10, 99) = 1099.
99 + 889 = 988 and 988 is a substring of concat(99, 889) = 99889.
889 + 8009 = 8898 and 8898 is a substring of 8898009.
8009 + 1101 = 9110 and 9110 is a substring of 80091101, etc.
Some examples of terms of the form x*10^k, x < 10: a(2136) = 800, a(4204) = 1000, a(6246) = 900, a(6618) = 100, a(11268) = 400, a(17446) = 10000, a(39292) = 600, a(44989) = 700, a(91359) = 300, ... - M. F. Hasler, Jul 03 2023
PROG
(PARI) A359482_first(n)={my(ok(a, k)=my(c=a*10^logint(k*10, 10)+k); k=10^logint(10*a+=k, 10); until(a>c\=10, c%k==a&& return(1)), U=[], a=0); vector(n, n, my(k=1); while(setsearch(U, k)|| !ok(a, k), k++); U=setunion(U, [k]); a=k)} \\ Becomes slow for n > 10. - M. F. Hasler, Jul 03 2023
CROSSREFS
Cf. A300000.
Sequence in context: A299952 A278672 A129542 * A224752 A224761 A171315
KEYWORD
base,nonn
AUTHOR
Eric Angelini and Hans Havermann, Jul 03 2023
STATUS
approved