login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359478
a(1) = 1; a(n) = -Sum_{k=2..n} k * a(floor(n/k)).
5
1, -2, -5, -3, -8, 1, -6, -6, -6, 9, -2, -8, -21, 0, 15, 15, -2, -2, -21, -31, -10, 23, 0, 0, 0, 39, 39, 25, -4, -49, -80, -80, -47, 4, 39, 39, 2, 59, 98, 98, 57, -6, -49, -71, -71, -2, -49, -49, -49, -49, 2, -24, -77, -77, -22, -22, 35, 122, 63, 93, 32, 125, 125, 125, 190, 91
OFFSET
1,2
LINKS
FORMULA
Sum_{k=1..n} k * a(floor(n/k)) = 0 for n > 1.
G.f. A(x) satisfies x * (1 - x) = Sum_{k>=1} k * (1 - x^k) * A(x^k).
MATHEMATICA
s[n_] := n * MoebiusMu[n] - If[OddQ[n], 0, MoebiusMu[n/2]*n/2]; Accumulate[Array[s, 100]] (* Amiram Eldar, May 09 2023 *)
PROG
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A359478(n):
if n <= 1:
return 1
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c -= (j2*(j2-1)-j*(j-1)>>1)*A359478(k1)
j, k1 = j2, n//j2
return c-(n*(n+1)-(j-1)*j>>1) # Chai Wah Wu, Mar 31 2023
CROSSREFS
Partial sums of A359484.
Cf. A359479.
Sequence in context: A331217 A021398 A186631 * A182184 A115318 A338060
KEYWORD
sign,look
AUTHOR
Seiichi Manyama, Mar 31 2023
STATUS
approved