This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092149 Partial sums of A092673. 2
 1, -1, -2, -1, -2, 0, -1, -1, -1, 1, 0, -1, -2, 0, 1, 1, 0, 0, -1, -2, -1, 1, 0, 0, 0, 2, 2, 1, 0, -2, -3, -3, -2, 0, 1, 1, 0, 2, 3, 3, 2, 0, -1, -2, -2, 0, -1, -1, -1, -1, 0, -1, -2, -2, -1, -1, 0, 2, 1, 2, 1, 3, 3, 3, 4, 2, 1, 0, 1, -1, -2, -2, -3, -1, -1, -2, -1, -3, -4, -4, -4, -2, -3, -2, -1, 1, 2, 2, 1, 1, 2, 1, 2, 4, 5, 5, 4, 4, 4, 4, 3, 1, 0, 0, -1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA G.f. Sum_{n >= 1} a(n)*(x^n)/((1-x^n)*(x^(n+1)-1))*x = -(x^2) and -1/x. [From Mats Granvik, Oct 11 2010] On the Riemann hypothesis, |a(n)| = O(n^(1/2+e)) for any e > 0. - Charles R Greathouse IV, Feb 07 2013 a(1)=1 then for n>=2 sum_{k=1..n}a(floor(n/k))=0- Benoit Cloitre, Feb 21 2013 PROG (PARI) a(n)=my(s); forstep(k=bitor(n\4+1, 1), n\2, 2, s-=moebius(k)); forstep(k=bitor(n\2+1, 1), n, 2, s+=moebius(k)); s \\ Charles R Greathouse IV, Feb 07 2013 CROSSREFS Sequence in context: A094114 A104607 A120728 * A171099 A127173 A035160 Adjacent sequences:  A092146 A092147 A092148 * A092150 A092151 A092152 KEYWORD sign AUTHOR Jon Perry, Mar 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.