login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092149
Partial sums of A092673.
7
1, -1, -2, -1, -2, 0, -1, -1, -1, 1, 0, -1, -2, 0, 1, 1, 0, 0, -1, -2, -1, 1, 0, 0, 0, 2, 2, 1, 0, -2, -3, -3, -2, 0, 1, 1, 0, 2, 3, 3, 2, 0, -1, -2, -2, 0, -1, -1, -1, -1, 0, -1, -2, -2, -1, -1, 0, 2, 1, 2, 1, 3, 3, 3, 4, 2, 1, 0, 1, -1, -2, -2, -3, -1, -1, -2, -1, -3, -4, -4, -4, -2, -3, -2, -1, 1, 2, 2, 1, 1, 2, 1, 2, 4, 5, 5, 4, 4, 4, 4, 3, 1, 0, 0, -1, 1
OFFSET
1,3
LINKS
FORMULA
G.f. Sum_{n >= 1} a(n)*(x^n)/((1-x^n)*(x^(n+1)-1))*x = -(x^2) and -1/x. [Mats Granvik, Oct 11 2010]
On the Riemann hypothesis, |a(n)| = O(n^(1/2+e)) for any e > 0. - Charles R Greathouse IV, Feb 07 2013
a(1)=1, then for n>=2, Sum_{k=1..n} a(floor(n/k)) = 0. - Benoit Cloitre, Feb 21 2013
G.f. A(x) satisfies x * (1 - x) = Sum_{k>=1} (1 - x^k) * A(x^k). - Seiichi Manyama, Mar 31 2023
MATHEMATICA
Accumulate@ Array[MoebiusMu[#] - If[OddQ@ #, 0, MoebiusMu[#/2]] &, 106] (* Michael De Vlieger, Mar 31 2021 *)
PROG
(PARI) a(n)=my(s); forstep(k=bitor(n\4+1, 1), n\2, 2, s-=moebius(k)); forstep(k=bitor(n\2+1, 1), n, 2, s+=moebius(k)); s \\ Charles R Greathouse IV, Feb 07 2013
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A092149(n):
if n == 1:
return 1
c, j = n+1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A092149(k1)
j, k1 = j2, n//j2
return j-c # Chai Wah Wu, Mar 31 2021
CROSSREFS
KEYWORD
sign,look
AUTHOR
Jon Perry, Mar 31 2004
STATUS
approved