OFFSET
1,1
COMMENTS
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Michael De Vlieger, Plot A001694(ym + x) at (x, y) for n = ym + x, m = 1024 and x = 1..m, y = 0..m-1, showing terms in this sequence in black, and both prime powers and those in A303606 in white.
Michael De Vlieger, Plot A286708(n) at (x, y) for n = ym + x, m = 1024 and x = 1..m, y = 0..m-1, showing terms in this sequence in black, and those in A303606 in white.
FORMULA
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} (zeta(k)/zeta(2*k) - 1) - 1 = 0.094962568855... . - Amiram Eldar, Dec 09 2023
EXAMPLE
Let b(n) = A286708(n).
b(1) = 36 is not in the sequence since rad(36) = A007947(36) = 6, and 36 = 6^2.
b(2) = a(1) = 72 since 72 is not a perfect power of rad(72).
b(3) = 100 = rad(100)^2 = 10^2, so it is not in the sequence.
b(4) = a(2) = 108, since 108 is not a perfect power of rad(108) = 6.
b(5) = a(3) = 144, since 144 is not a perfect power of rad(144) = 6.
b(6) = 196 is not in the sequence since 196 = rad(196)^2 = 14^2, etc.
MATHEMATICA
nn = 5000; s = Rest@ Select[Union@ Flatten@Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Not@*PrimePowerQ]; Select[s, !SameQ @@ FactorInteger[#][[All, -1]] &]
PROG
(Python)
from math import isqrt
from sympy import mobius, integer_nthroot
def A359280(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
j = isqrt(x)
c, l = n+x+3-(y:=x.bit_length())+squarefreepi(j)+sum(squarefreepi(integer_nthroot(x, k)[0]) for k in range(4, y)), 0
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
return c+l
return bisection(f, n, n) # Chai Wah Wu, Feb 09 2025
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Aug 01 2023
STATUS
approved