login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359044
Primes p such that primepi(p)-1 divides p-1.
0
3, 5, 7, 31, 97, 101, 331, 1009, 1093, 1117, 1123, 1129, 3067, 64621, 480853, 481009, 481021, 481093, 481297, 481417, 3524431, 9558361, 9559591, 9560041, 9560071, 189961939, 189962011, 189962137, 189962623, 189963271, 189963901, 189968923, 514273609, 514274027
OFFSET
1,1
FORMULA
a(n) = prime(A105286(n)+1).
EXAMPLE
prime(11) = 31 and 11-1 divides 31-1, so 31 is a term.
PROG
(Python)
from itertools import count, islice
from sympy import prime
def A359044_gen(): # generator of terms
for i in count(2):
if not ((p:=prime(i))-1) % (i-1):
yield p
A359044_list = list(islice(A359044_gen(), 10))
CROSSREFS
Cf. A105286.
Sequence in context: A247104 A006378 A162714 * A002396 A302099 A029508
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Dec 14 2022
STATUS
approved