login
A359044
Primes p such that primepi(p)-1 divides p-1.
0
3, 5, 7, 31, 97, 101, 331, 1009, 1093, 1117, 1123, 1129, 3067, 64621, 480853, 481009, 481021, 481093, 481297, 481417, 3524431, 9558361, 9559591, 9560041, 9560071, 189961939, 189962011, 189962137, 189962623, 189963271, 189963901, 189968923, 514273609, 514274027
OFFSET
1,1
FORMULA
a(n) = prime(A105286(n)+1).
EXAMPLE
prime(11) = 31 and 11-1 divides 31-1, so 31 is a term.
PROG
(Python)
from itertools import count, islice
from sympy import prime
def A359044_gen(): # generator of terms
for i in count(2):
if not ((p:=prime(i))-1) % (i-1):
yield p
A359044_list = list(islice(A359044_gen(), 10))
CROSSREFS
Cf. A105286.
Sequence in context: A247104 A006378 A162714 * A002396 A302099 A029508
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Dec 14 2022
STATUS
approved