login
Primes p such that primepi(p)-1 divides p-1.
0

%I #9 Dec 14 2022 11:23:21

%S 3,5,7,31,97,101,331,1009,1093,1117,1123,1129,3067,64621,480853,

%T 481009,481021,481093,481297,481417,3524431,9558361,9559591,9560041,

%U 9560071,189961939,189962011,189962137,189962623,189963271,189963901,189968923,514273609,514274027

%N Primes p such that primepi(p)-1 divides p-1.

%F a(n) = prime(A105286(n)+1).

%e prime(11) = 31 and 11-1 divides 31-1, so 31 is a term.

%o (Python)

%o from itertools import count, islice

%o from sympy import prime

%o def A359044_gen(): # generator of terms

%o for i in count(2):

%o if not ((p:=prime(i))-1) % (i-1):

%o yield p

%o A359044_list = list(islice(A359044_gen(),10))

%Y Cf. A105286.

%K nonn

%O 1,1

%A _Chai Wah Wu_, Dec 14 2022