login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359037
a(n) = Sum_{d|n} tau(d^6), where tau(n) = number of divisors of n, cf. A000005.
4
1, 8, 8, 21, 8, 64, 8, 40, 21, 64, 8, 168, 8, 64, 64, 65, 8, 168, 8, 168, 64, 64, 8, 320, 21, 64, 40, 168, 8, 512, 8, 96, 64, 64, 64, 441, 8, 64, 64, 320, 8, 512, 8, 168, 168, 64, 8, 520, 21, 168, 64, 168, 8, 320, 64, 320, 64, 64, 8, 1344, 8, 64, 168, 133, 64, 512, 8, 168, 64, 512, 8, 840, 8
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} tau(n * d^4) = Sum_{d|n} tau(n^2 * d^2) = Sum_{d|n} tau(n^3).
a(n) = tau(n) * tau(n^3).
G.f.: Sum_{k>=1} tau(k^6) * x^k/(1 - x^k).
Multiplicative with a(p^e) = 3*e^2 + 4*e + 1. - Amiram Eldar, Dec 14 2022
MATHEMATICA
Array[DivisorSum[#, DivisorSigma[0, #^6] &] &, 120] (* Michael De Vlieger, Dec 13 2022 *)
f[p_, e_] := 3*e^2 + 4*e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 14 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, numdiv(d^6));
(PARI) a(n) = sumdiv(n, d, numdiv(n*d^4));
(PARI) a(n) = sumdiv(n, d, numdiv(n^2*d^2));
(PARI) a(n) = sumdiv(n, d, numdiv(n^3));
(PARI) a(n) = numdiv(n)*numdiv(n^3);
(PARI) my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k^6)*x^k/(1-x^k)))
KEYWORD
nonn,mult,easy
AUTHOR
Seiichi Manyama, Dec 13 2022
STATUS
approved