login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358945
Decimal expansion of the positive root of 4*x^2 + x - 1.
0
3, 9, 0, 3, 8, 8, 2, 0, 3, 2, 0, 2, 2, 0, 7, 5, 6, 8, 7, 2, 7, 6, 7, 6, 2, 3, 1, 9, 9, 6, 7, 5, 9, 6, 2, 8, 1, 4, 3, 3, 9, 9, 9, 0, 3, 1, 7, 1, 7, 0, 2, 5, 5, 4, 2, 9, 9, 8, 2, 9, 1, 9, 6, 6, 3, 6, 8, 6, 9, 2, 9, 3, 2, 9, 2, 2
OFFSET
0,1
COMMENTS
The negative root is -(A189038 - 1) = -0.6403882032... .
c^n = A052923(-n) + A006131(-(n+1))*phi17, for n >= 0, with phi17 = A222132 = (1 + sqrt(17))/2, A052923(-n) = -(-2*i)^(-n)*S(-(n+2), i/2) = (i/2)^n*S(n, i/2), with i = sqrt(-1), and A006131(-(n+1)) = A052923(-n+1)/4 = -(i/2)^(n+1)*S(n-1, i/2), with the S-Chebyshev polynomials (see A049310), and S(-n, x) = -S(n-2, x), for n >= 1. - Wolfdieter Lang, Jan 04 2024
FORMULA
c = (-1 + sqrt(17))/8 = A189038 - 5/4 = A174930 - 5/8.
c = 1/phi17 = (-1 + phi17)/4, with phi17 = A222132. - Wolfdieter Lang, Jan 05 2024
EXAMPLE
c = 0.39038820320220756872767623199675962814339990317170255429982919663...
MATHEMATICA
RealDigits[(Sqrt[17] - 1)/8, 10, 120][[1]] (* Amiram Eldar, Jan 20 2023 *)
RealDigits[Root[4x^2+x-1, 2], 10, 120][[1]] (* Harvey P. Dale, Jan 15 2024 *)
KEYWORD
nonn,cons,easy
AUTHOR
Wolfdieter Lang, Jan 20 2023
STATUS
approved