login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189038
Decimal expansion of (9+sqrt(17))/8.
1
1, 6, 4, 0, 3, 8, 8, 2, 0, 3, 2, 0, 2, 2, 0, 7, 5, 6, 8, 7, 2, 7, 6, 7, 6, 2, 3, 1, 9, 9, 6, 7, 5, 9, 6, 2, 8, 1, 4, 3, 3, 9, 9, 9, 0, 3, 1, 7, 1, 7, 0, 2, 5, 5, 4, 2, 9, 9, 8, 2, 9, 1, 9, 6, 6, 3, 6, 8, 6, 9, 2, 9, 3, 2, 9, 2, 2, 0, 2, 6, 9, 9, 1, 9, 8, 4, 8, 2, 9, 5, 6, 3, 5, 1, 3, 3, 5, 5, 3, 7, 0, 8, 5, 5, 6, 8, 0, 0, 5, 1, 1, 7, 4, 0, 1, 7, 6, 7, 7, 0, 1, 9, 1, 2, 6, 7, 7, 6, 0, 5
OFFSET
1,2
COMMENTS
Decimal expansion of the shape (= length/width = ((9+sqrt(17))/8) of the greater (9/4)-contraction rectangle.
See A188738 for an introduction to lesser and greater r-contraction rectangles, their shapes, and partitioning these rectangles into a sets of squares in a manner that matches the continued fractions of their shapes.
This number - 1, namely w = (1 + sqrt(17))/8 = 0.6403882032..., is the positive real root of 4*x^2 - x - 1, with negative root -(-1 + sqrt(17))/8 = -0.3903882032... = -(w - 1/4). - Wolfdieter Lang, Dec 12 2022
EXAMPLE
1.64038820320220756872767623199675962814339990...
MATHEMATICA
r = 9/4; t = (r + (-4 + r^2)^(1/2))/2; FullSimplify[t]
N[t, 130]
RealDigits[N[t, 130]][[1]]
ContinuedFraction[t, 120]
PROG
(PARI) (sqrt(17)+9)/8 \\ Charles R Greathouse IV, Apr 25 2016
CROSSREFS
Sequence in context: A010495 A111310 A190575 * A097047 A331421 A197581
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Apr 15 2011
STATUS
approved