login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267411
Decimal expansion of the constant describing the mean number of 2-connected components in a random connected labeled planar graph on n vertices.
4
3, 9, 0, 5, 1, 8, 0, 2, 8, 2, 4, 5, 9, 1, 1, 1, 4, 7, 5, 5, 8, 5, 0, 6, 2, 6, 2, 1, 7, 3, 0, 9, 5, 0, 6, 7, 0, 4, 6, 4, 1, 1, 3, 0, 7, 6, 5, 2, 6, 0, 2, 9, 3, 5, 2, 1, 9, 0, 0, 6, 1, 9, 4, 5, 7, 1, 5, 5, 1, 4, 1, 5, 3, 5, 6, 1, 3, 6, 3, 1, 4, 2, 3, 9
OFFSET
-1,1
LINKS
Omer Gimenez, Marc Noy, Asymptotic enumeration and limit laws of planar graphs, J. Amer. Math. Soc. 22 (2009), 309-329.
FORMULA
Equals lim E[Xn]/n, where Xn is the number of 2-connected components in a random connected labeled planar graph with n vertices; also equals lim Var(Xn)/n.
Equals Kz(A266389), where function t->Kz(t) is defined in the PARI code.
EXAMPLE
0.039051802824591114...
PROG
(PARI)
A266389= 0.6263716633;
Xi(t) = (1+3*t) * (1-t)^3 / ((16*t^3));
A1(t) = log(1+t) * (3*t-1) * (1+t)^3 / (16*t^3);
A2(t) = log(1+2*t) * (1+3*t) * (1-t)^3 / (32*t^3);
A3(t) = (1-t) * (185*t^4 + 698*t^3 - 217*t^2 - 160*t + 6);
A4(t) = 64*t * (1+3*t)^2 * (3+t);
A(t) = A1(t) + A2(t) + A3(t) / A4(t);
R(t) = 1/16 * sqrt(1+3*t) * (1/t - 1)^3 * exp(A(t));
Kz(t) = log(Xi(t)/R(t));
CROSSREFS
Sequence in context: A335777 A358945 A248726 * A370468 A021260 A215633
KEYWORD
nonn,cons
AUTHOR
Gheorghe Coserea, Jan 14 2016
STATUS
approved