login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358846
a(n) = 1 if A276086(6*n) == 5 (mod 6), otherwise 0, where A276086 is the primorial base exp-function.
6
0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1
OFFSET
0
COMMENTS
Question: Are 0's and 1's evenly distributed? Exactly 50/50? See also A358847.
FORMULA
a(n) = [A276086(6*n) == 5 (mod 6)], where [ ] is the Iverson bracket.
a(n) = A358842(6*n).
a(0) = 0, and for n > 0, a(n) = a(n-1) XOR A358847(n), where XOR is bitwise-XOR, A003987. See comments in A358842.
PROG
(PARI)
A358842(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (5==(m%6)); };
A358846(n) = A358842(6*n);
CROSSREFS
Characteristic function of A358844, whose complement A358845 gives the positions of zeros.
Sequence in context: A189661 A145573 A092202 * A285686 A303591 A159684
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 03 2022
STATUS
approved