login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358841
a(n) = 1 if A276086(n) is of the form 6k+1, where A276086 is the primorial base exp-function.
6
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1
OFFSET
0
FORMULA
a(n) = [1 == A276086(n) mod 6], where [ ] is the Iverson bracket.
a(n) = [2 == A328578(n)].
a(n) = A079979(n) - A358842(n) = A059841(n) - A120325(n) - A358842(n).
PROG
(PARI) A358841(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (1==(m%6)); };
CROSSREFS
Characteristic function of A328632.
Cf. also A353488.
Sequence in context: A015868 A323402 A240355 * A015824 A014856 A015703
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 02 2022
STATUS
approved