login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358692
Gilbreath transform of primes p(2k) with 2 prefixed; see Comments.
2
1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
Suppose that S = (s(k)), for k >= 1, is a sequence of real numbers. For n >= 1, let g(1,n) = |s(n+1)-s(n)| and g(k,n) = |g(k-1, n+1) - g(k-1,n)f| for k >= 2.
We call (g(k,n)) the Gilbreath array of S and (g(n,1)) the Gilbreath transform of S, written as G(S). If S is the sequences of primes, then the Gilbreath conjecture holds that G(S) consists exclusively of 1's. It appears that there are many S such that G(S) is eventually periodic. See A358691 for conjectured examples.
EXAMPLE
Corner of successive absolute difference array (including initial row of primes p(2k) with 2 prefixed:
2 3 7 13 19 29 37 43 53 61
1 4 6 6 10 8 6 10 8 10
3 2 0 4 2 2 4 2 2 2
1 2 4 2 0 2 2 0 0 0
1 2 2 2 2 0 2 0 0 0
1 0 0 0 2 2 2 0 0 4
1 0 0 2 0 0 2 0 4 2
MAPLE
A358692T := proc(n, k)
option remember ;
if n = 1 then
if k = 1 then
2;
else
ithprime(2*k-2) ;
end if;
else
abs(procname(n-1, k+1)-procname(n-1, k)) ;
end if;
end proc:
A358692 := proc(n)
A358692T(n+1, 1) ;
end proc:
seq(A358692(n), n=1..1000) ; # R. J. Mathar, Feb 01 2023
MATHEMATICA
z = 230; g[t_] := Abs[Differences[t]]
t = Join[{2}, Prime[2 Range[z]]]
s[1] = g[t]; s[n_] := g[s[n - 1]];
Table[s[n], {n, 1, z}];
Table[First[s[n]], {n, 1, z}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 27 2022
STATUS
approved