login
A361129
Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives M(n).
3
3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 11, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 5, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1
OFFSET
2,1
COMMENTS
The p-part of a number k is the highest power of p that divides k. For example, the 2-part of 24 is 8, the 3-part is 3.
Since so many of the initial terms are 1, we show more than the usual number of terms in the DATA section.
Conjecture: All terms are odd, and every odd number eventually appears.
LINKS
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved