login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358688
a(n) = n! * Sum_{k=0..n} k^(k * (n-k)) / (n-k)!.
2
1, 2, 5, 34, 869, 75866, 28213327, 39049033346, 256215628707257, 7710689746589777938, 1063776147486867074877851, 870059224717752809087935599002, 3104894940194751778363241199111802885, 77521065749331962430758061530260243383954602
OFFSET
0,2
LINKS
FORMULA
E.g.f.: Sum_{k>=0} x^k * exp(k^k * x).
G.f.: Sum_{k>=0} k! * x^k / (1 - k^k * x)^(k+1).
MATHEMATICA
Table[1 + n!*Sum[k^(k*(n-k))/(n-k)!, {k, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Nov 27 2022 *)
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(k*(n-k))/(n-k)!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k*exp(x)^k^k)))
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k/(1-k^k*x)^(k+1)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 26 2022
STATUS
approved