login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356674
a(n) = n! * Sum_{k=0..n} k^(k*(n-k))/k!.
3
1, 2, 5, 25, 349, 19941, 4440391, 4382699203, 17687865017481, 356274213630958297, 33338407933090938442411, 16214021627369697901867402911, 43817834057167927861655409052462093, 595284492835035398061242850538179192931525
OFFSET
0,2
LINKS
FORMULA
E.g.f: Sum_{k>=0} x^k / (k! * (1 - k^k * x)).
log(a(n)) ~ n^2*log(n)/4 * (1 - log(2)/log(n) + 1/(4*log(n)^2)). - Vaclav Kotesovec, Nov 27 2022
MATHEMATICA
Table[n!*(1 + Sum[k^(k*(n-k))/k!, {k, 1, n}]), {n, 0, 12}] (* Vaclav Kotesovec, Nov 27 2022 *)
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(k*(n-k))/k!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k^k*x)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 22 2022
STATUS
approved