login
A358563
The number of maximal antichains in the Tamari lattice of order n.
0
1, 2, 4, 26, 1979, 161117453
OFFSET
1,2
COMMENTS
Also the number of maximal order ideals in the Tamari lattice of order n.
Maximal antichains are those which cannot be extended without violating the antichain condition.
REFERENCES
D. Tamari, The algebra of bracketings and their enumeration, Nieuw Archief voor Wiskunde, Series 3, 10 (1962), 131-146.
EXAMPLE
The line (Hasse) diagram of the Tamari lattice for n=3 is
((ab)c)d
/ \
(a(bc))d (ab)(cd)
| /
a((bc)d) /
\ /
a(b(cd))
with the a(3)=4 maximal antichains {((ab)c)d}, {(ab)(cd), (a(bc))d}, {(ab)(cd), a((bc)d)}, {a(b(cd))}.
CROSSREFS
Cf. A358562 (number of antichains in the Tamari lattice).
Cf. A326358 (number of maximal antichains in the Boolean lattice).
Cf. A358041 (number of maximal antichains in the lattice of set partitions of an n-element set).
Cf. A358390 (number of maximal antichains in the Kreweras lattice of non-crossing set partitions).
Cf. A143674 (number of maximal antichains in the lattice of Dyck paths).
Sequence in context: A240040 A088888 A102996 * A189896 A095182 A104465
KEYWORD
nonn,hard,more
AUTHOR
Dmitry I. Ignatov, Nov 22 2022
STATUS
approved