login
A095182
Consider the triangle in which the j-th row begins with prime(j) and is the arithmetic progression with least common difference such that the remaining j-1 terms are composite and not divisible by prime(j). Sequence gives last term in each row.
2
2, 4, 27, 10, 39, 68, 299, 194, 159, 497, 261, 840, 1205, 576, 901, 2318, 2155, 2730, 2569, 1762, 4853, 9550, 6265, 8622, 12313, 7176, 17289, 7208, 23657, 17136, 25297, 41640, 21609, 38782, 17115, 45056, 10561, 70574, 28401, 63392, 104539, 14900
OFFSET
1,1
MATHEMATICA
a[n_] := For[r = 1, True, r++, ro = Table[Prime[n] + k* r, {k, 0, n - 1}]; If[AllTrue[Rest[ro], CompositeQ[#] && !Divisible[#, Prime[n]]&], Return[ro[[-1]]]]]; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Sep 26 2017 *)
PROG
(PARI) For arithprog(p, j) see A095181. {m=42; for(j=1, m, p=prime(j); d=arithprog(p, j); print1(p+d*(j-1), ", "))}
CROSSREFS
Cf. A095181 for the first few rows of the triangle.
Sequence in context: A102996 A358563 A189896 * A104465 A175759 A098515
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jun 02 2004
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jun 03 2004
STATUS
approved