login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095180
Reverse digits of primes, append to sequence if result is a prime.
3
2, 3, 5, 7, 11, 31, 71, 13, 73, 17, 37, 97, 79, 101, 701, 311, 131, 941, 151, 751, 761, 971, 181, 191, 991, 113, 313, 733, 743, 353, 953, 373, 383, 983, 107, 907, 727, 337, 937, 347, 157, 757, 167, 967, 787, 797, 709, 919, 929, 739, 149, 359, 769, 179, 389, 199
OFFSET
1,1
COMMENTS
Conjecture: the Benford law limit is 2=Sum[N[Log[10, 1 + 1/d[[n]]]], {n, 1, Length[d]}]^2/(( #totalprimes/#totalPrimes)). At 50000 primes total it is 2.05931. - Roger L. Bagula and Gary W. Adamson, Jul 02 2008
Presumably this does not satisfy Benford's law. - N. J. A. Sloane, Feb 09 2017
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..25000 (terms 1..206 from Roger L. Bagula and Gary W. Adamson)
Eric Weisstein's World of Mathematics, Benford's Law.
EXAMPLE
The prime 107 in reverse is 701 which is prime.
MATHEMATICA
b = Flatten[Table[If[PrimeQ[Sum[IntegerDigits[Prime[n]][[i]]*10^(i - 1), {i, 1, Length[IntegerDigits[Prime[n]]]}]], Sum[IntegerDigits[Prime[n]][[i]]*10^(i - 1), {i, 1, Length[IntegerDigits[Prime[n]]]}], {}], {n, 1, 1000}]] (* Roger L. Bagula and Gary W. Adamson, Jul 02 2008 *)
Select[FromDigits[Reverse[IntegerDigits[#]]]&/@Prime[Range[300]], PrimeQ] (* Harvey P. Dale, May 05 2015 *)
PROG
(PARI) r(n) = forprime(x=1, n, y=eval(rev(x)); if(isprime(y), print1(y", "))) \ Get the reverse of the input string rev(str) = { local(tmp, j, s); tmp = Vec(Str(str)); s=""; forstep(j=length(tmp), 1, -1, s=concat(s, tmp[j])); return(s) }
(Haskell)
a095180 n = a095180_list !! (n-1)
a095180_list =filter ((== 1) . a010051) a004087_list
-- Reinhard Zumkeller, Oct 14 2011
CROSSREFS
Cf. A007500.
Sequence in context: A104154 A123214 A119834 * A101989 A098922 A265324
KEYWORD
base,easy,nonn
AUTHOR
Cino Hilliard, Jun 21 2004
STATUS
approved