login
A358353
Numbers that are not of the form m + (sum of digits of m) + (product of digits of m) for any m.
1
1, 2, 4, 5, 7, 8, 10, 13, 16, 19, 25, 28, 31, 36, 37, 39, 40, 41, 45, 47, 49, 51, 52, 57, 59, 60, 61, 64, 65, 67, 70, 71, 72, 75, 79, 81, 84, 85, 87, 89, 91, 93, 94, 96, 100, 102, 116, 120, 125, 126, 129, 137, 141, 142, 146, 150, 152, 153, 160, 161, 162, 166, 171, 172, 173, 180
OFFSET
1,2
COMMENTS
Numbers missing from A358350.
The first differences show some periodicity, for example those for values 2184-3811 repeat at terms 5513-7140. - Bill McEachen, Jan 08 2023
EXAMPLE
There is no term du_10 < 36 such that du + (d+u) + (d*u) = 36, so 36 is a term.
MAPLE
f:= proc(n) local L; L:= convert(n, base, 10); n + convert(L, `+`)+convert(L, `*`) end proc:
sort(convert({$1..200} minus map(f, {$1..200}), list)); # Robert Israel, Dec 22 2022
MATHEMATICA
f[n_] := n + Total[(d = IntegerDigits[n])] + Times @@ d; With[{m = 180}, Complement[Range[m], Table[f[n], {n, 1, m}]]] (* Amiram Eldar, Dec 19 2022 *)
PROG
(Python)
from math import prod
def sp(n): d = list(map(int, str(n))); return sum(d) + prod(d)
def ok(n): return all(m + sp(m) != n for m in range(n+1))
print([k for k in range(181) if ok(k)]) # Michael S. Branicky, Dec 19 2022
(PARI) f(n) = my(d=digits(n)); vecsum(d)+vecprod(d)+n; \\ A161351
isok(m) = for(i=1, m, if (f(i) == m, return(0))); return(1); \\ Michel Marcus, Jan 09 2023
CROSSREFS
Similar: A003052 (m+digitsum), A230104 (m+digitprod).
Sequence in context: A060686 A004214 A258376 * A353919 A231979 A072013
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Dec 19 2022
STATUS
approved