login
A004214
Positive numbers that are not the sum of three nonzero squares.
(Formerly M0959)
19
1, 2, 4, 5, 7, 8, 10, 13, 15, 16, 20, 23, 25, 28, 31, 32, 37, 39, 40, 47, 52, 55, 58, 60, 63, 64, 71, 79, 80, 85, 87, 92, 95, 100, 103, 111, 112, 119, 124, 127, 128, 130, 135, 143, 148, 151, 156, 159, 160, 167, 175, 183, 188, 191, 199, 207, 208, 215, 220, 223, 231
OFFSET
1,2
COMMENTS
Not of the form x^2 + y^2 + z^2 with x, y, z >= 1.
Complement of A000408, but skipping the zero. - R. J. Mathar, Nov 23 2006
A025427(a(n)) = 0. - Reinhard Zumkeller, Feb 26 2015
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
EXAMPLE
The smallest numbers that are the sums of 3 nonzero squares are 3=1+1+1, 6=1+1+4, 9=1+4+4, etc.
MAPLE
gf := sum(sum(sum(q^(x^2+y^2+z^2), x=1..25), y=1..25), z=1..25): s := series(gf, q, 500): for n from 1 to 500 do if coeff(s, q, n)=0 then printf(`%d, `, n) fi:od:
MATHEMATICA
f[n_] := Flatten[Position[Take[Rest[CoefficientList[Sum[x^(i^2), {i, n}]^3, x]], n^2], 0]]; f[16] (* Ray Chandler, Dec 06 2006 *)
PROG
(PARI) isA000408(n)={ local(a, b) ; a=1; while(a^2+1<n, b=1 ; while(b<=a && a^2+b^2<n, if(issquare(n-a^2-b^2), return(1) ) ; b++ ; ) ; a++ ; ) ; return(0) ; }
isA004214(n)={ return(! isA000408(n)) ; }
n=1 ; for(an=1, 20000, if(isA004214(an), print(n, " ", an); n++)) \\ R. J. Mathar, Nov 23 2006
(Haskell)
a004214 n = a004214_list !! (n-1)
a004214_list = filter ((== 0) . a025427) [1..]
-- Reinhard Zumkeller, Feb 26 2015
CROSSREFS
Sequence in context: A027902 A067076 A060686 * A258376 A358353 A353919
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Apr 20 2001
Name clarified by Wolfdieter Lang, Apr 04 2013
STATUS
approved