The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A357957 a(n) = A005259(n)^5 - A005258(n)^2. 5
 0, 3116, 2073071232, 6299980938881516, 39141322964380888600000, 368495989505416178203682748116, 4552312485541626792249211584618373944, 68109360474242016374599574592870648425552876, 1174806832391451114413440151405736019461523615095744 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Conjectures: 1) a(p - 1) == 0 (mod p^5) for all primes p >= 5 (checked up to p = 271). 2) a(p^r - 1) == a(p^(r-1) - 1) ( mod p^(3*r+3) ) for r >= 2 and all primes p >= 5. These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259. 3) Put u(n) = A005259(n)^5 / A005258(n)^2. Then u(p^r - 1) == u(p^(r-1) - 1) ( mod p^(3*r+3) ) for r >= 2 and all primes p >= 5. LINKS Table of n, a(n) for n=0..8. FORMULA a(n) = ( Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2 )^5 - ( Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k) )^2. a(n*p^r - 1) == a(n*p^(r-1) - 1) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5. a(n) = hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1)^5 - hypergeom([1 + n, -n, -n], [1, 1], 1)^2. - Peter Luschny, Nov 01 2022 EXAMPLE a(7) = 4552312485541626792249211584618373944 = (2^3)*(3^3)*(7^5)*29*107* 404116272977592231282158029 == 0 (mod 7^5). MAPLE seq(add(binomial(n, k)^2*binomial(n+k, k)^2, k = 0..n)^5 - add(binomial(n, k)^2*binomial(n+k, k), k = 0..n)^2, n = 0..20); # Alternatively: a := n -> hypergeom([-n, -n, 1 + n, 1 + n], [1, 1, 1], 1)^5 - hypergeom([1 + n, -n, -n], [1, 1], 1)^2: seq(simplify(a(n)), n=0..8); # Peter Luschny, Nov 01 2022 CROSSREFS Cf. A005258, A005259, A212334, A352655, A357567, A357568, A357569, A357956, A357958, A357959, A357960. Sequence in context: A137839 A343373 A238513 * A269324 A183850 A002433 Adjacent sequences: A357954 A357955 A357956 * A357958 A357959 A357960 KEYWORD nonn,easy AUTHOR Peter Bala, Oct 24 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 09:25 EDT 2024. Contains 374587 sequences. (Running on oeis4.)