login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357862
Numbers whose prime indices have strictly increasing run-sums. Heinz numbers of the partitions counted by A304428.
6
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).
EXAMPLE
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
6: {1,2}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
19: {8}
For example, the prime indices of 24 are {1,1,1,2}, with run-sums (3,2), which are not strictly increasing, so 24 is not in the sequence.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Less@@Total/@Split[primeMS[#]]&]
CROSSREFS
These partitions are counted by A304428.
The complement is A357863.
These are the indices of rows in A354584 that are strictly increasing.
The opposite (strictly decreasing) version is A357864, counted by A304430.
The weakly increasing version is A357875, counted by A304405.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.
Sequence in context: A130572 A353838 A183224 * A098240 A023805 A168186
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 19 2022
STATUS
approved