login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357859
Number of integer factorizations of 2n into distinct even factors.
1
1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 4, 1, 2, 1, 5, 1, 3, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 3, 1, 5, 1, 2, 1, 6, 1, 2, 1, 5, 1, 3, 1, 3, 1, 3, 1, 7, 1, 2, 1, 3, 1, 3, 1, 7, 1, 2, 1, 6, 1, 2, 1
OFFSET
1,4
EXAMPLE
The a(n) factorizations for n = 2, 4, 12, 24, 32, 48, 60, 96:
(4) (8) (24) (48) (64) (96) (120) (192)
(2*4) (4*6) (6*8) (2*32) (2*48) (2*60) (2*96)
(2*12) (2*24) (4*16) (4*24) (4*30) (4*48)
(4*12) (2*4*8) (6*16) (6*20) (6*32)
(2*4*6) (8*12) (10*12) (8*24)
(2*6*8) (2*6*10) (12*16)
(2*4*12) (4*6*8)
(2*4*24)
(2*6*16)
(2*8*12)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[2*n], UnsameQ@@#&&OddQ[Times@@(#+1)]&]], {n, 100}]
CROSSREFS
The version for partitions instead of factorizations is A000009.
Positions of 1's are A004280.
The non-strict version is A340785.
Including odd n gives A357860.
A000005 counts divisors.
A001055 counts factorizations.
A001221 counts distinct prime factors, sum A001414.
A001222 counts prime-power divisors.
A050361 counts strict factorizations into prime powers.
Sequence in context: A167679 A051881 A363852 * A338731 A081757 A323880
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 17 2022
STATUS
approved