login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356239
a(n) = Sum_{k=1..n} k^n * sigma_0(k).
4
1, 9, 71, 963, 9873, 231749, 2976863, 86348423, 1824883450, 55584932826, 1104642697680, 64932555347084, 1366828157222090, 61273696016238014, 2581786206601959958, 129797968403021602450, 3678372903755436314440, 295835829367866540495396
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} k^n * Sum_{j=1..floor(n/k)} j^n.
MAPLE
f:= proc(n) local k; add(k^n * numtheory:-tau(k), k=1..n) end proc:
map(f, [$1..30]); # Robert Israel, Jan 21 2024
MATHEMATICA
a[n_] := Sum[k^n * DivisorSigma[0, k], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 30 2022 *)
PROG
(PARI) a(n) = sum(k=1, n, k^n*sigma(k, 0));
(PARI) a(n) = sum(k=1, n, k^n*sum(j=1, n\k, j^n));
(Python)
from math import isqrt
from sympy import bernoulli
def A356239(n): return (-(bernoulli(n+1, (s:=isqrt(n))+1)-(b:=bernoulli(n+1)))**2//(n+1) + sum(k**n*(bernoulli(n+1, n//k+1)-b)<<1 for k in range(1, s+1)))//(n+1) # Chai Wah Wu, Oct 21 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 30 2022
STATUS
approved