OFFSET
1,1
COMMENTS
For 14 <= m <= 999 and k <= A356110(31) = 8069560, the number of sets of primes of the form k^2 + {1,3,7,13,m} is the greatest for m = 163. There are 51 such terms. See b-file.
All terms are 2 or 4 modulo 6.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..6757 (first 237 terms from Jean-Marc Rebert, terms <= 10^10).
EXAMPLE
2 is a term since 2^2 + {1,3,7,13,163} = {5,7,11,17,167} are all primes.
MAPLE
q:= k-> andmap(j-> isprime(k^2+j), [1, 3, 7, 13, 163]):
select(q, [$0..1000000])[]; # Alois P. Heinz, Jul 28 2022
MATHEMATICA
Select[Range[4*10^6], AllTrue[#^2 + {1, 3, 7, 13, 163}, PrimeQ] &] (* Amiram Eldar, Jul 28 2022 *)
PROG
(PARI)
is(k)=my(v=[1, 3, 7, 13, 163], ok=1); for(i=1, #v, if(!isprime(k^2+v[i]), ok=0; break)); ok
(Python)
from sympy import isprime
def ok(n): return all(isprime(n*n+i) for i in {1, 3, 7, 13, 163})
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 28 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Jean-Marc Rebert, Jul 28 2022
STATUS
approved