login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356175
Numbers k such that k^2 + {1,3,7,13,163} are prime.
1
2, 4, 10, 14290, 64390, 74554, 83464, 93460, 132304, 238850, 262630, 277630, 300206, 352600, 376190, 404954, 415180, 610340, 806180, 984686, 1025650, 1047050, 1106116, 1382860, 2014624, 2440714, 2525870, 2538344, 2760026, 2826380, 3145600, 3508586, 3715156
OFFSET
1,1
COMMENTS
For 14 <= m <= 999 and k <= A356110(31) = 8069560, the number of sets of primes of the form k^2 + {1,3,7,13,m} is the greatest for m = 163. There are 51 such terms. See b-file.
All terms are 2 or 4 modulo 6.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..6757 (first 237 terms from Jean-Marc Rebert, terms <= 10^10).
EXAMPLE
2 is a term since 2^2 + {1,3,7,13,163} = {5,7,11,17,167} are all primes.
MAPLE
q:= k-> andmap(j-> isprime(k^2+j), [1, 3, 7, 13, 163]):
select(q, [$0..1000000])[]; # Alois P. Heinz, Jul 28 2022
MATHEMATICA
Select[Range[4*10^6], AllTrue[#^2 + {1, 3, 7, 13, 163}, PrimeQ] &] (* Amiram Eldar, Jul 28 2022 *)
PROG
(PARI)
is(k)=my(v=[1, 3, 7, 13, 163], ok=1); for(i=1, #v, if(!isprime(k^2+v[i]), ok=0; break)); ok
(Python)
from sympy import isprime
def ok(n): return all(isprime(n*n+i) for i in {1, 3, 7, 13, 163})
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 28 2022
CROSSREFS
Cf. A356110.
Sequence in context: A012616 A012611 A356109 * A133757 A246164 A124183
KEYWORD
nonn
AUTHOR
Jean-Marc Rebert, Jul 28 2022
STATUS
approved